M

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

AN ANALYSIS OF DISC CARVING TECHNIQUES

by
Nicholas Mikus
March 2005
Thesis Advisor: Chris Eagle
Second Reader: George Dinolt

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 2005 Master’s Thesis

4. TITLE AND SUBTITLE: An Analysis of Disc Carving Techniques 5. FUNDING NUMBERS

6. AUTHOR(S) Mikus, Nicholas

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited

13. ABSTRACT (maximum 200 words)

Disc carving is an essential element of computer forensic analysis. However the high cost of commercial solutions coupled
with the lack of availability of open source tools to perform disc analysis has become a hindrance to those performing analysis
on UNIX computers. In addition even expensive commercial products offer only a fairly limited ability to “carve” for various
files.

In this thesis, an open source tool known as Foremost is modified in such a way as to address the need for such a carving
tool in a UNIX environment. An implementation of various heuristics for recognizing file formats will be demonstrated as well
as the ability to provide some file system specific support.

As a result of these implementations a revision of Foremost will be provided that will be made available as an open source
tool to aid analysts in their forensic investigations.

14. SUBJECT TERMS 15. NUMBER OF
Computer Forensics, Disc Carving, Data Carving PAGES
159

16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

il

Approved for public release; distribution is unlimited

AN ANALYSIS OF DISC CARVING TECHNIQUES

Nicholas A. Mikus
Civilian, Federal Cyber Corps
B.S., University of Illinois Chicago, 2003

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

March 2005
Author: Nicholas Mikus
Approved by: Christopher S. Eagle
Thesis Advisor
George Dinolt
Second Reader

Peter J. Denning
Chairman, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Disc carving is an essential element of computer forensic analysis. However the
high cost of commercial solutions coupled with the lack of availability of open source
tools to perform disc analysis has become a hindrance to those performing analysis on
UNIX computers. In addition even expensive commercial products offer only a fairly

limited ability to “carve” for various files.

In this thesis, an open source tool known as Foremost is modified in such a way
as to address the need for such a carving tool in a UNIX environment. An
implementation of various heuristics for recognizing file formats will be demonstrated as

well as the ability to provide some file system specific support.

As a result of these implementations a revision of Foremost will be provided that
will be made available as an open source tool to aid analysts in their forensic

investigations.

THIS PAGE INTENTIONALLY LEFT BLANK

vi

IIIL.

TABLE OF CONTENTS

INTRODUCTION 1
A. DISC CARVING BACKGROUND 2
B. PURPOSE OF STUDY 3
C. THESIS ORGANIZATIONON 3
BACKGROUND 7
A. FOREMOST 7
B. FILE 9
IMPLEMENTATION 13
A. HEURISTICS 13
1. OLE Archive 13

2, PDF (Adobe Portable Document Format) 20

3. JPEG 22

4. GIF 25

3. BMP (Windows Bitmap Files) 26

6. MOYV (QuickTime Movie files) 28

T WMV (Windows Media Video) 30

8. VALY 33

9. GZIP 36

10. RIFF 37

11. HTML 39

12. CPP (C/C++ Source Code) 39

B. SEARCH ALGORITHMS 40
1. Boyer Moore Description 40

2. Algorithm Analysis 42

C. INDIRECT BLOCKS 42
1. UNIX File System Overview 42

Z, Indirect Block Detection 42
EXPERIMENTAL RESULTS 47
A. OVERVIEW 47
B. NTFS 47
C. FAT32 51
D. EXT2/EXT3 55
CONCLUSION 59
A. SUMMARY 59
B. PROBLEMS 59
C. FUTURE WORK 60
APPENDIX A. SOURCE CODE 63
A. EXTRACT.C 63
B. EXTRACT.H 86

vii

C. APLC 88
D. OLE.H 95
E. ENGINE.C 97
F. DIR.C 105
G. HELPERS.C 108
H. MAIN.C 115
L MAIN.H 118
J. CONFIG.C 124
K. STATE.C 128
L. CLI.C 135
M. FOREMOST.CONF 136
LIST OF REFERENCES 141

INITTIAL DISTRIBUTION LIST 143

viii

LIST OF FIGURES

Figure 1. ole-dump output of a MS Word Document..........c.ccocueeeeneeieniiennnnenceenseecsensenenns 17
Figure 2. ole-dump output of an Excel Spreadsheet..........cccoovervininncniinieninccnieecceceneeeaen. 18
Figure 3. ole-dump output of an Power Point Document............cceeeeieiirnceninnennceseenseennn. 19
Figure 4. Linearized PDF (From Ref. [11])..cccciiiiiiiiiiiicincincecce et e se e s 21
Figure 5. Non Linearized Header............cociiiiiiiiniieiiieneceecece et ee e e e seesneas 22
Figure 6. QuickTime Movie Structure (From: Ref. [17])...cccccviiiiiiiiiiiicinceccceeccceeceen e 29
Figure 7. ASF File Structure (From: Ref. [18]) ..cuciiiiiiiiiciiiiiceeccterctnne e 31
Figure 8. Basic Zip File Structure (From Ref. [19]) ..cccceieiiiiiiieieiieerenereceececee e 34
Figure 9. Brute Force Search (From Ref. [23]) .cccviiiiiiiiiiiicircenercseeecen e 41
Figure 10. Boyer Moore Search (From Ref. [23]) ...c.coceeiiiriiniicieieeieerenerceceeeec s 41
Figure 11. Debugfs Screenshot..........cciieeiieiiiiiiirinccereccre e e e e e s sneas 43
Figure 12. Indirect Block SCreenshot...........cccocieiiiirniiiiiiiererircece et eeeenesnens 44

ix

THIS PAGE INTENTIONALLY LEFT BLANK

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.

LIST OF TABLES

Foremost configuration file..........coccviieiiiinniinn i 8
FILE sample magic formatccccoeeiiiieiiiicimncinne e scseessees e ssessseessnenens 10
OLE Header Structure (After: Ref. [8]) .ccccccviriiiiiiicircrrnece e 14
0] B30 3 (%: 16 155 gl 3 (5.6 L1101 o SRS 15
JPEG Marker Information (After: Ref.[13])..cccceiciiniiiiiiciinciice e 23
Canon Digital Camera JPEG representation..........ccccceevvininniencieeesenncensiennne 24
GIF File FOmMAtcc.coiiiiieiecieeieeeene ettt e s e st see e et e s e smee e e e s 25
BMP Header Information(After: Ref. [16])...ccccceriiiiiiiiiiiiiniinercceecceeeceenns 27
BMP Header in hexadecimalccccoiiiniininnenieiienienenceceseeee e 28
MOV Extraction Algorithm Step-through........cccccooviiiiiiiiiiniiinccccceecee 30
ASF File Properties Object Structure (After: Ref. [18])..cccceivviiiiviiienciinicnnnne 32
ASF Header in Hexadecimalccccooiiiiiininienieiienienencece e see e 33
ZIP local file header structure (From Ref.[19])...cccccccviiiirinininiieicceecccneceee 34
End of Central Directory Object Structure (From Ref.[19])......ccccccrvvrrrnnnnee. 35
ZIP extraction algorithm step-through...........ccccceeviiniiiiiniinnccecce e 36
GZIP Header in Hexadecimal..........ccccoieriirinnicnienicnienieceeeceee e see s seeees 37
Wave File Header ..ottt se e 38
AVI File Header ..ottt e e s sneese e e e e 38
Brian Carriers JPEG test image files (From Ref. [25])..cccccvivviiiiivnncinicnnnne 48
ILOOK results from NTFS sample image........cccccvreerieecvennnnnnennieesseesseennnns 49
Foremost (0.69) results from NTFS sample image..........cccccevverivercienccenncennnne 50
Foremost (1.0) results from NTFS sample image..........ccccccereriveriincienncennnnn 51
Sample FAT32 test iMage......ccueiieeeiieeciiirieiiercieeeseerseesseesseesseesssesssessneesseenns 52
Foremost (0.69) results from FAT32 sample image........c.cccecvvivericeeccenncennnne 53
Foremost (1.0) results from FAT32 sample image........c.ccccceevvrrinricercienncnnns 54
Sample EXT2 TMAGE......ccceeiririiiieiiieeestiectnseesceeeseesseesseessees e esssessnssssnsessenns 55
Foremost (0.69) results from EXT2 sample image........c.cccccvrvericenriiencienncnnns 56
Foremost (1.0) results from EXT2 sample image..........ccccecceererrinriiercienncnnns 57

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation
under Grant No.DUE-0114018.

Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author and do not necessarily reflect the views of the National
Science Foundation.

This paper, as well as most things in my life, would not have been possible
without my wife Holly.

I would also like to thank Jesse Kornblum and Kris Kendall for developing the
open source tool Foremost for analysts to use and learn from.

Finally I would like to thank LCDR Chris Eagle for teaching me to be “leet”.

Xiii

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

L. INTRODUCTION

As computers become more prevalent in society, their use for criminal and other
nefarious purposes also increases. This has lead to a demand for Computer Forensic
specialists to analyze digital evidence to help catch these criminals. In response to this
demand the FBI and other law enforcement agencies are building Regional Computer
Forensic Laboratories across the country. These facilities are equipped with state of the
art tools and highly trained examiners to help with an overwhelming case load. In FY
2003, the RCFL Program processed 82.3 terabytes of data; this is the equivalent of
roughly 3,427,644 boxes of paper filled with text [Ref. 1]. The San Diego RCFL alone
received over 700 requests to review various cases involving the need for computer
forensic examinations. This shows the magnitude of the increase in the computer related
evidence, and the bad news is, it is only going to get worse for examiners. As hard drives
and multimedia storage devices grow exponentially so must the capabilities of the tools
which investigators use to analyze these devices. One major area that must be improved

is referred to as disc carving.

Disc carving is an essential aspect of Computer Forensics and is an area that has
been somewhat neglected in the development of new forensic tools. The term disc
carving can be defined as data recovering using “raw” information as opposed to file-
system meta-data. Disc carving has a great impact on computer forensic cases because it
adds the flexibility of being able to dissect stored information independent of any
underlying file system structure. Disk carving has also become synonymous with the
term data carving but for the context of this paper the term disc carving will be used. My
research in the arena of disc carving will aid investigators in being able to extract useful
information from storage devices using an open source product which can automate a
large portion of the process. Making this tool and its source code freely available
eliminates one of the greatest inhibitors which is the cost of many commercial forensic

suites.

New approaches to disc carving must be studied to help develop more efficient

and reliable products for investigators to use. These methods can hopefully offset some

of the increasing work load that high volume storage devices pose to limited number of
investigators. In addition this research can help in the prosecution of criminals who use

computers in some form or another in the conduct of their business.

A. DISC CARVING BACKGROUND

Disc carving refers the ability to recover files from a medium which may or may
not be a recognizable file system. It is commonly used in reference to extracting files
from unallocated or slack space from a given file system [Ref. 2]. Files are allocated disk
space in multiples of the file system block size. Slack space refers to the unused space
within the last block allocated to a file. This space lies between the last data byte of the
file and the end of its associated block. The amount of slack space a file contains can be
computed as (file size) modulo (block size). Thus since all files do not end exactly on

block boundaries this “excess” space can be used to hide data from file system view.

Disc carving research has been relegated to the background of forensic tool
development. Tools such as ILOOK [Ref. 3], Encase [Ref. 4], and FTK (Forensic Tool
Kit) [Ref. 5] focus on recovering files via metadata. It is true that this is a very effective
and efficient method of file recovery, however, if the metadata is corrupted or non-
existent, then these methods usually fail. Also the data in question could have been
“deleted” from the file system view. However, the data could very well be, and often is
still intact on the disc, it is just a matter of “carving” it out. In my experimental results
data that is years old can often be recovered from unallocated space, depending on the

volume size and disc activity.

FTK and Encase address the issues of data carving but these tools are Microsoft
Windows based and are very expensive. The cost of these tools and the fact that the
extraction methods are closed source is an inhibitor to the forensic community that
wishes to use a more robust tool that can perform successful extractions. ILOOK is
another Microsoft Windows based tool used in forensic investigations but it is only
available to Law Enforcement and government agencies. ILOOK is free to specific
government agencies that support a law enforcement directive; however, like FTK and

Encase, it is closed source. Thus the ability to learn from and improve extraction

2

methods is diminished. The fact that the majority of tools currently used by law
enforcement are closed source has lead some developers and forensic researches to turn

to the open source community.

In the open source world Brian Carrier’s Sleuthkit has become a standard tool for
doing forensic analysis on UNIX systems. This tool has provided a wealth of resources
to examiners that use a UNIX platform and also those faced with fiscal constraints who
cannot afford its Windows counterparts. However, one glaring hole in the Sleuthkit is
that it provides no carving functionality. Thus investigators looked to a tool named
Foremost to fill in the gap. Foremost is a very powerful disc carving tool but it is lacking
in some respects as chapter II will discuss. The eventual inclusion of disc carving
functionality in Sleuthkit will help solidify its place in the forensic community and

provide a viable alternative to commercial products.

B. PURPOSE OF STUDY

The purpose of this research is to develop a more intelligent tool to extract files
from a medium independent of its file-system structure. Such a tool will greatly reduce
the time spent by investigators plowing through binary file representations trying to
ascertain what files can and cannot be recovered. Current open source methods of disc
carving lack the sophistication needed to provided a robust disc carving program. The
general idea to develop such a tool is to mimic the behavior of the file command available
on UNIX systems but to apply that intelligence to the disc carving tool Foremost.
Foremost is a utility that “carves” files out of raw data blocks based on file header and
footer data. The file command, which will be covered in depth in chapter II, often looks
at more than just the header of the file in order to comprehend the file’s internal data
structures as well. If the functionality of file and Foremost were combined then a much
more powerful tool could be produced. The strategy that emerged as the most fruitful in
the development of extraction methods was to perform a more detailed analysis of
specific file data structures, allowing for a more in depth recognition as well as increasing
the speed of the program. Speed is obviously key when performing analysis of very large
disc images, the data structure approach does require the program to become more

intelligent but it will save time for the examiner who is currently required to at least have
3

a working knowledge of file format specifications in order to successfully recover files
manually. The automation of this process however challenging, offers great promise in

terms of productivity.

My research produced many extraction algorithms which can then be scrutinized
and tested via the vast open source forensic community. Creating open source forensic
tools is a great way to develop and test tools economically and efficiently. The current
implementation of the algorithms described in chapter Il can be viewed in the CVS

repository of Foremost at http://cvs.sourceforge.net/viewcvs.py/foremost/foremost-1.0/.

The availability of the enhancement has lead to increased feedback from the forensic
community about features they would like to see as well as problems they encounter.

The outcome of the cycle of publishing and revising the source code will
eventually lead to a more robust library of extractions methods that can essentially do the
“dirty work” of looking at blocks of data trying to determine if the file is still intact and
what type of file is it. Tools like Foremost solve many problems but also introduce new
ones. However, these problems may be viewed in a positive light because their solutions

lead to more intelligent and efficient products that can aid analysts in data carving.

The debate against open source is usually that the software product may be more
prone to exploitation. This is not a major concern with Forensic software as it is not
providing a service to multiple clients, just analyzing a local drive. Thus in the case of

forensic software, using open source tools just makes more sense.

The goal of a good disc carving tool is to remain file-system independent, which
ensures the flexibility of being able to analyze a wider range of storage media. However,
options should be added if knowledge of the file-system of a given device is obtained.
One example of this is the problem that indirection blocks, used in UNIX file-systems,
pose to disc carving. This issue is covered in great detail in chapter three and is another
area that commercial forensic products fail to address in the context of disc carving.
Thus this paper will describe the implementation of algorithms which will enhance
extraction capabilities of an existing Forensic tool, independent of file-system structure,
but also, when possible, leveraging certain file-system attributes that can aid the

extraction process.

C. THESIS ORGANIZATIONON

This paper will present a working implementation of a disc carving tool that can
recover specified files from any block of raw binary data such as, but not restricted to,
partial or complete disk images. Chapter II details the operation of Foremost and the file
command and explains how a hybrid will benefit the forensic community. Chapter III
will provide a description of the important algorithms and the details of their
construction. The algorithms include file extraction methods as well as indirection block
detection for UNIX file-systems. Full source code examples of each extraction algorithm
are provided in Appendix A. Chapter IV will provide a set of experimental results when
running the foremost enhancement versus various data carving tools. Different files
systems are discussed and tested as well as the details of the indirect block detection
capabilities. Chapter V will conclude my research by discussing problems faced as well

as describe future work in this are of Computer Forensics.

THIS PAGE INTENTIONALLY LEFT BLANK

II. BACKGROUND

A. FOREMOST

Foremost is an open source forensic tool created for the Linux platform and
developed by Special Agents Kris Kendall and Jesse Kornblum of the U.S. Air Force
Office of Special Investigations. In accordance with 17 USC 105, this tool is not afforded
any copyright protection because it is a work of the U.S. government. The tool was
inspired by, and designed to imitate the functionality of, the DOS program CarvThis,
written by the Defense Computer Forensics Lab. Foremost enables forensic examiners to
automatically recover files or partial files from a bit image (or the media itself) based on

file header and footer types specified in a user-defined configuration file.

Foremost works by reading into memory a pre-defined portion of the media or
media image under examination. By default this chunk of memory is 10MB, thus images
are analyzed 10MB at a time. Each chunk is searched for file headers contained within
the Foremost configuration file. If a matching header is found, then Foremost attempts to
locate the corresponding end of the file. Foremost will search for the footer (which
signifies the end of the file) until a file size limit listed in the configuration file is reached.
If the footer is found then the recovered file data is written to a separate disk file,
however if it is not then Foremost will dump the maximum file size after the header. If
no footer is defined in the configuration file then foremost will extract the maximum
number of bytes specified by the configuration file after every header is found. Using a
file size limit serves as a means to stop Foremost from adding data to a recovered file if
the appropriate file footer is not found. This is a fairly efficient approach if such a

header/footer pair is uniquely defined but this is not often the case.

Another limitation of Foremost is the fact that even if a file is successfully
extracted, the same data that was just analyzed is checked again. This method is
designed to recover embedded files containing the header signature but can be very
computationally expensive. This implementation is flawed in the case where Foremost
cannot determine the end of the file, thus it merely dumps a predetermined amount of

data, this data is then searched for the same header. Files that contain multiple headers

7

result in fragments of files being written to disk often resulting in the creation of multiple
garbage files. This reduces the speed of the program as time is wasted re-analyzing and
re-extracting data that has already been extracted as part of a larger file. This added
execution time could be better spent ensuring a valid extraction in the first place rather

than relying on forensic specialists to wade through redundant fragments of a given file.

Table 1 illustrates some sample Foremost configuration file definitions. The first
field denotes the suffix appended to the file if extracted, the second defines whether the
search to be performed is case sensitive, followed by the maximum defined file size and
lastly the header/footer pair. Notice the definition for avi doesn’t include a footer; this is
a common occurrence in the configuration file. If this is the case then Foremost will just
extract the maximum amount following the header, often leading to truncated extractions.
Other formats in the configuration file that do not contain an adequate footer include doc,

mov, bmp, xls, java.

Suffix | Case Sensitive | Max Size Header Footer
g | Y 20000000 | \xff\xd8\xfAxe0\x00\x10 | \xff\xd9
htm |N 50000 | <html </html>
avi |Y 4000000 | RIFF??2?2AVI

Table 1. Foremost configuration file

These formats show the flawed method by which these files are extracted. The
program then relies on a forensics analyst to extract useful information from the
maximum file amount. This amount may not be of sufficient size, thus forcing the
analyst to increase the file size and re-run the program iteratively until enough of the file
has been extracted. This is an added burden to the time consuming task of performing a
detailed analysis of very large storage devices. If this process could be made more
intelligent then examiners could spend more time analyzing the evidence rather than

extracting it.

B. FILE

File is a program which examines a given file’s content in an attempt to classify it
based on the actual data in the file rather than merely the suffix (.exe) [Ref. 6]. There are
three sets of tests that are performed by file: file system tests, magic number tests, and
language tests. The first test that succeeds causes the file type to be printed. The idea of
the Foremost enhancement is to harness the same type of built-in intelligence provided in

the magic number tests.

The determined file type will usually fall into one of the following categories: text
(the file contains only printable characters and a few common control characters and is
probably safe to read on an ASCII terminal), executable (the file contains the result of
compiling a program into a binary form understandable by some operating system), or data
meaning anything else (data is usually ‘binary' or non-printable). Exceptions are well-
known file formats (core dump files, tar archives, etc.) that are known to contain binary
data. When modifying the /usr/share/magic file or the program itself, it is necessary to
preserve these keywords. Note that the file /usr/share/magic is built mechanically from a
large number of small files in the subdirectory Magdir in the source distribution of this
program, these files can be modified by a user knowledgeable about a specific file

specification.

The file system tests are based on examining the return from a stat(2) [Ref. 7]
system call. The program checks to see if the file is empty, or if it's some sort of special
file. Any known file types appropriate to the system you are running on (sockets,
symbolic links, or named pipes (FIFOs) on those systems that implement them) are
discovered if they are defined in the system header file <sys/stat.h>.

The magic number tests are used to check for files with data in particular fixed
formats. The canonical example of this is a binary executable (compiled program) a.out
file, whose format is defined in a.out.h and possibly exec.h in the standard include
directory. These files have a 'magic number' stored in a specific, well defined location
near the beginning of the file that tells the UNIX operating system that the file is a binary
executable, and which of several types thereof. The concept of “magic number' has been

adopted by the developers of many other data file formats. Any file with some invariant

9

identifier at a small fixed offset into the file can usually be described in this way. In the
Linux operating system, the information identifying these files is read from the compiled
magic file /usr/share/magic.mgc , or /usr/share/magic if the “compiled” file-magic.mgc
does not exist. Notice Table 2 which shows how the standard JPEG header is defined in
the magic file. More tests are performed to determine more information about the image
but the principal of the program is that it looks at the data structures of the file as opposed

to just header information.

Offset | Data Type Data to match Description

0 Beshort 0xffd8 JPEG image data

>6 String JFIF \b, JFIF standard

Table 2. FILE sample magic format

If a file does not match any of the entries in the magic file, it is examined to see if
it seems to be a text file. ASCII, ISO-8859-x, non-ISO 8-bit extended-ASCII character
sets (such as those used on Macintosh and IBM PC systems), UTF-8-encoded Unicode,
UTF-16-encoded Unicode, and EBCDIC character sets can be distinguished by the
different ranges and sequences of bytes that constitute printable text in each set. If a file
passes any of these tests, its character set is reported. ASCII, ISO-8859-x, UTF-8, and
extended-ASCII files are identified as ““text" because they will be mostly readable on
nearly any terminal; UTF-16 and EBCDIC are only "‘character data" because, while they
contain text, it is text that will require translation before it can be read. In addition, file
will attempt to determine other characteristics of text-type files. If the lines of a file are
terminated by CR, CRLF, or NUL, instead of the Unix-standard LF, this will be reported.

Files that contain embedded escape sequences or overstriking will also be identified.

Once the file program has determined the character set used in a text-type file, it
will attempt to determine in what language the file is written. The language tests look for
particular strings that can appear anywhere in the first few blocks of a file. For example,
the keyword “.br” indicates that the file is most likely a troff(1) input file, just as the

keyword struct indicates a C program. These tests are less reliable than the previous two

10

groups, so they are performed last. The language test routines also test for some
miscellany (such as tar(1) archives). Any file that cannot be identified as having been

written in any of the character sets listed above is simply said to be *“data"[Ref 6.].

These tests and the ability to define new tests based on the file offsets prototype
for the types of logic that must be incorporated into a program like Foremost to make it
more effective. The only thing file lacks for our context is a looping structure. In
addition it doesn’t concern itself with embedded files or where the file data terminates.
1However applying this functionality is relatively trivial once the data structures of the
file are adequately understood. File specifications are the key to utilizing the searching

capability that Foremost provides in the most efficient manner.

1" An embedded file refers to a FILE that is encapsulated within another file.
11

THIS PAGE INTENTIONALLY LEFT BLANK

12

III. IMPLEMENTATION

A. HEURISTICS

1. OLE Archive

Microsoft’s Object Linking and Embedding file format provides for a “structured
storage” environment for various types of file formats [Ref. 8]. It is basically an
abstraction so that file formats can use the OLE API to read and write data to the disk.
This is useful because the formats can then store the data as objects instead of a flat file.
It also permits more cross functionality between applications that adhere to this file
structure, therefore it is easier to copy objects from a Word document to an Excel file for
instance. However this also significantly complicates file extraction because the file

structure is much more dynamic.

Previously Foremost only provided the OLE header for Microsoft Word
documents and extracted the following the first S0KB relying upon the examiner to
determine the end of the file. The algorithms presented here provide a much higher rate
of extraction with increased accuracy of the data recovered. These algorithms make use
of an API developed by the Chicago Project (http://chicago.sourceforge.net/) whose goal
is to develop a C library to read and write Microsoft Excel documents [Ref. 9]. This API
was modified to add error detection and the ability to analyze an array of bytes as
opposed to a stand alone file. This enables Foremost to use this API to extract file

dependent information and determine what type of file was stored in an OLE structure.

Parsing the OLE data structures proved complicated but extremely rewarding
because the extraction of any interesting Microsoft File Format adhering o the OLE
format became trivial. The algorithm works by first reading the header block which is
always 512 bytes. The block size of the remaining document is defined in the header but
it is usually 512 bytes as well. This value is specified by the uSectorShift field located in
the header block which is outlined in Table 3 below. This table also provides information
about what data values are located within the OLE header and Table 4 provides a
hexadecimal display of an OLE header taken from a Word Document. Table 4 also
shows the magic number, uByteOrder, num FAT blocks, and the root start block in

13

bold as these fields are crucial to begin parsing the OLE data structures as they provide

where to begin reading information and how to interpret it. Using the information in the
header we can then build the FAT (File Allocation Table) of the OLE document.

Offset Data Type Name Comments

0 Char magic[8] Must equal Ox d0 cf 11 €0 al bl 1a el

8 Char clsid[16] class id field is generally not used

24 Ushort uMinorVersion Minor version of the format: 33 is written by reference
implementation. Used mainly for error checking purposes
in a disc carving context.

26 Ushort uDIIVersion major version of the dll format: 3 is written by reference
implementation

28 Ushort uByteOrder indicates Intel byte-ordering

30 Ushort uSectorShift size of sectors in power-of-two (typically 9, indicating 512-
byte sectors)

32 Ushort uMiniSectorShift size of mini-sectors in power-of-two (typically 6, indicating
64-byte mini-sectors)

34 Ushort Reserved reserved, must be zero

36 Ulong reserved1 reserved, must be zero

40 Ulong reserved2 reserved, must be zero

44 Ulong num_FAT blocks number of SECTs in the FAT chain

48 Ulong root_start block first SECT in the FAT Directory chain

52 Ulong dfsignature signature used for transactioning must be zero. The
reference implementation does not support transactioning

56 Ulong miniSectorCutoff Maximum size for mini-streams: typically 4096 bytes.

60 Ulong dir flag first SECT in the mini-FAT chain

64 Ulong csectMiniFat number of SECTs in the mini-FAT chain

68 Ulong FAT next block first SECT in the DIF chain

72 Ulong num_extra FAT bl | number of SECTs in the DIF chain

ocks
76 Ulong sectFat[109] FAT block list starts here. first 109 entries
Table 3. OLE Header Structure (After: Ref. [8])

14

Offset Hexadecimal

0 d0 cf 11 e0 a1 b1 1a e1 00 00 00 00 00 00 00 00

16 00 00 00 00 00 00 00 00 3e 00 03 00 fe ff 09 00

32 06 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00

48 5a 00 00 00 00 00 00 00 00 10 00 00 5¢ 00 00 00

64 01 00 00 00 fe ff ff £f£ 00 00 00 00 59 00 00 00

Table 4. OLE Header Hexdump

The FAT contains the allocation information within a compound file. Every sector
in the file is represented within the FAT in some fashion, including those sectors that are
unallocated (free). The Fat is a virtual stream made up of one or more FAT Sectors [Ref.
8]. FAT sectors are arrays of SECT’s that represent the allocation of space within the
file. Each stream is represented in the FAT by a chain, in much the same fashion as a
DOS file allocation table (FAT). To elaborate, the set of FAT sectors can be considered
together to be a linked list—where each node in the list contains the SECT of the next
sector in the chain, and this SECT can be used as an index into the Fat array to continue

along the chain [Ref. 5].

Once the File Allocation Table is parsed, it is used to extract objects embedded
within the file. This is done by examining the directory lists and then reading each entry
within them. The entries themselves hold the application specific information we are
looking for to determine what type of file it is (doc, ppt, xIs...). The FAT is essentially
an array of pointers to the directory listings which in turn are arrays of pointers to the
entries themselves. The complexity of this hierarchy of pointers is the reason the
Chicago Project developed the OLE API. Programmers need not learn the OLE file
structure in order to achieve simple tasks of reading and writing to objects within the
document. The entries can then be parsed and their name, size, and offset are stored to
help determine the type of the file and size. Notice the listing in Figure 1 below which
shows the output of a program called ole-dump which was written for the Chicago

Project. It basically reads each entry of each directory structure and dumps the
15

information to the screen. The OLE extraction algorithm uses the basic functions of this
program to help discern the size and type of the file. Notice that DIRENT 2 has the title
“WordDocument”, all word documents contain some variation of this name as an object
in one of their entries. Therefore it can be used as an identifier for Microsoft Word

Documents.

16

DIRENT 0 root directory Root Entry

prev dirent = ffffffff next dirent = ffffffff dir block =
unkl = 20906 unk2 = 0 unk3 = <0

unk4 = 46000000 unk5 = 0 unk6 = 0

secsl =0 secs?2 = 1896317920

daysl =0 days2 = 29484230

start block = 26

size = 80

DIRENT 1 file 1Table

prev dirent = ffffffff next dirent = 5 dir block = ffffffff
unkl = 0 unk2 = 0 unk3 = 0

unk4 = 0 unk5 = 0 unk6 = 0

start block = a

size = 1000

DIRENT 2 file WordDocument

prev dirent = 1 next dirent = ffffffff dir block = ffffffff
unkl = 0 unk2 = 0 unk3 = 0

unk4 = 0 unk5 = 0 unk6 = 0

start block = 0

size = 1222

DIRENT 3 file 0005 SummaryInformation

prev dirent = 2 next dirent = 4 dir block = ffffffff

unkl = 0 unk2 = 0 unk3 = 0

unk4 = 0 unk5 = 0 unk6 = 0

start block = 12

size = 1000

DIRENT 4 file 0005 Document SummaryInformation
prev dirent = ffffffff next dirent = ffffffff dir block =
unkl = 0 unk2 = 0 unk3 = 0

unk4 = 0 unk5 = 0 unk6 = 0

start block = la

size = 1000

DIRENT 5 file 0001 CompOb J

prev dirent = ffffffff next dirent = ffffffff dir block =
unkl = 0 unk2 = 0 unk3 = 0

unk4 = 0 unk5 = 0 unk6 = 0

start block = 0

size = 6a

Root Entry

1Table

4096

WordDocument 4642
SummaryInformation 4096
Document SummaryInformation 4096
CompObj

106

Figure 1. ole-dump output of a MS Word Document

fEffffff

fEffffff

Figure 2 below shows the output of an Excel spreadsheet that has been run

through the ole-dump program. DIRENT 1 is the main identifier here and it can be used

to identify files generated by the Microsoft Excel program. Parsing the OLE File

17

Allocation Table provides a great advantage in being able to discern exactly what the

contents of the file are.

DIRENT 0 : root directory Root Entry

prev dirent = ffffffff next dirent = ffffffff dir block = 2
unkl = 20820 unk2 = 0 unk3 = <0

unk4 = 46000000 unk5 =0 unké = 0

secsl =0 secs2 =0

daysl =0 days2 =0

start block = fffffffe

size =0

DIRENT 1 : file Workbook

prev dirent = ffffffff next dirent = ffffffff dir Dblock = ffffffff
unkl = 0 unk2 = 0 unk3 = 0

unk4 = 0 unk5 = 0 unkée = 0

start block = 0

size = 33a6

DIRENT 2 : file 0005 SummaryInformation

prev dirent = 1 next dirent = 3 dir block = ffffffff

unkl = 0 unk2 = 0 unk3 = 0

unk4 = 0 unk5 = 0 unkée = 0

start block = 1la

size = 1000

DIRENT 3 : file 0005 Document SummaryInformation

prev dirent = ffffffff next dirent = ffffffff dir Dblock = ffffffff
unkl = 0 unk2 = 0 unk3 = 0

unk4 = 0 unk5 = 0 unkée = 0

start block = 22

size = 1000

Root Entry

Workbook 13222
SummaryInformation 4096
Document SummaryInformation 4096

Figure 2. ole-dump output of an Excel Spreadsheet

Lastly, Figure 3 shows an example of the contents of a simple Power Point
Document with the unique identifier "Power Point Document” located in DIRENT 3.
Notice that the size of each DIRENT is used to determine the actual size of the file,
however, each size is contained within a block size that is specified in the OLE header,

thus each entry must be padded to adhere to this structure.

18

DIRENT 0 : root directory Root Entry

prev dirent = ffffffff next dirent = ffffffff dir block =
unkl = 64818d10 unk?2 = 11cf4df% unk3 = aal0lea
unk4 = e829b900 unk5 = 0 unk6 = 0

secsl =0 secs?2 = 3860999472

daysl =0 days2 = 29256468

start block = 6

size = 19c0

DIRENT 1 : file Current User

prev dirent = ffffffff next dirent = ffffffff dir block =
unkl = 0 unk2 = 0 unk3 = 0

unk4 = 0 unk5 = 0 unk6 = 0

start block = 66

size = 38

DIRENT 2 : file 0005 SummaryInformation

prev dirent = 1 next dirent = 3 dir block = ffffffff

unkl = 0 unk2 = 0 unk3 = 0

unk4 = 0 unk5 = 0 unk6 = 0

start block = 36

size = bcc

DIRENT 3 : file PowerPoint Document

prev dirent = ffffffff next dirent = 4 dir block = ffffffff
unkl = 0 unk2 = 0 unk3 = 0

unk4 = 0 unk5 = 0 unk6 = 0

start block = 9

size = bl2

DIRENT 4 : file 0005 Document SummaryInformation
prev dirent = ffffffff next dirent = ffffffff dir block =
unkl = 0 unk2 = 0 unk3 = 0

unk4 = 0 unk5 = 0 unk6 = 0

start block = 0

size = 204

Root Entry

Current User

56

SummaryInformation 3020
PowerPoint Document 2834
Document SummaryInformation 516

Figure 3. ole-dump output of an Power Point Document

Each of these documents has a very similar structure. They usually contain
summary information which includes information about the author, the file name, when
the file was last modified. Other methods to try to use the document summary

information as a type of makeshift footer are not reliable as this information can appear at

any location in the file.

The flexibility of the OLE file-structure also introduces the need for added error
detection. OLE files are complex in nature and must be verified to ensure proper parsing

and extraction. The consistency of various fields such fields as the block size of the

19

2
86

fEffffff

fEffffff

document, the number of FAT blocks, and the mini-FAT cutoff can be used to perform
error checking. This provides added assurance that the algorithm is not wasting its time

parsing corrupted data.

The extraction of OLE files offers great promise. Because the Microsoft Office
suite is so popular, documentation used by criminals can often be found in this format.
This also enhances the forensic capabilities of the UNIX/LINUX platform as reliable
OLE detection/extraction is only currently available on the Windows platform. In
addition, with the advent of OpenOffice [Ref. 10] which provides support for the
Microsoft Office suite these documents are often authored on UNIX systems as well.
Thus this detection capability provides an invaluable resource to those performing

forensic analysis.

2. PDF (Adobe Portable Document Format)

PDF is a file format used to represent a document in a manner independent of the
application sofiware, hardware, and operating system used to create it [Ref. 11]. A PDF
file contains a PDF document and other supporting data. It is basically a binary file
which also uses ASCII tags as delimiters to describe the header and trailer data structures
in an SGML inspired fashion.

One of the main issues that earlier versions of Foremost had was that some
formats (including PDF) often have multiple footers. This creates an obvious problem:
how to determine which footer actually represents the end of the file. As a result
Kornblum and Kendall developed a REVERSE search mechanism [Ref. 12] to allow
them to find the last footer found in a given buffer. The REVERSE method essentially
looked for the last footer in the buffer and associated it with the given header. This
proved to be successful some of the time, but severely degraded its usefulness as the
buffer size grew. Often multiple PDF files would be extracted as one file. In other cases,
the footer appended was that of a corrupted PDF, causing the extracted file to be un-
readable.

Further research of the PDF file specification revealed that a PDF contains

multiple footers only if it has been “linearized”. [Ref. 11] A linearized PDF file is one

20

that has been organized in a special way to enable efficient incremental access in a

network environment. Thus linearized PDF files are very common.

The PDF extraction function searches for the keyword “Linearized” in the header.
If it is found, then the length of the file is stored in the header preceded by a “\L ”
character sequence. This approach obviously increases the speed of Foremost as the
program no longer needs to crunch through the entire PDF attempting to guess where it
terminates. In this case, the function simply performs a search for the “\L.” sequence and
parses the number that follows, which is the file size in bytes. See Figure 4 for a

structural description of a Linearized PDF.

Part I: Header
%“PDF-1.1
% Dbinary stuff

Part 2: Linearization parameters

43 0 obj

Lo

fLinearized 1 version
/L 54567 file length
/H [475 598] Primary Hint Stream offset and length (Part 5)
/O 45 object number of first page’s Page object | Part &)
/E 5437 offset of end of first page
/N 11 number of pages in document
/T 52786 affser of first entry in main xref table (Part 11)
>

endobij

Part 3: First Page xref table and trailer

xref

43 14

0000000052 00000 n

0000000392 00000 nn

00000010732 00000 n

...crosys-reference enltries for remaining objects in ihe first page...
0000000475 00000 n

Figure 4. Linearized PDF (From Ref. [11])

The PDF file format is more reminiscent of an XML document than a traditional
binary document. This is why the common approach of being able to jump among data

structures does not apply to this format. However, since linearized PDF files are

21

becoming more prevalent, this algorithm will perform very quickly since the file size for
this kind of file is often found within the first 100 bytes and no more file processing is

necessary to extract these files which are often on the order of several megabytes in size.

Even when a file is not linearized the heuristic performs well in terms of
successful extraction because of the unique trailer defined by the PDF specification
(%%EOF). Hence a straight forward Boyer Moore search (described further in Chapter
III) for the end of the file can be performed. This approach was successfully used to
extract PDF’s prior to PDF version 1.2 because the Linearized capability was not

implemented.

Some minor error checking is also implemented. The first 100 bytes must include
an “obj” tag, the fundamental storage tag for all PDF elements. An example of a non-
linearized header is given below in Figure 5. Notice that the obj reference is still intact in

this case making it a valuable marker to determine whether or not the file has been

corrupted.
Offset | Hexadecimal ASCII
00 25504446 2D 31 2E 33 0A 25 C7EC 8F A2 0A 36 %PDF-1.3.%Cil1¢.6
16 20 30 20 6F 62 6A 0A 3C 3C 2F 4C 65 6E 67 74 68 0 obj.<</Length
32 203720302052 2F 46 69 6C 74 65 72 20 2F 46 7 0 R/Filter /F
48 6C 617465446563 6F 64653E3E0A 737472 lateDecode>>.str
64 65 61 6D 0A 78 9C AD 5A 49 73 eam.xce-Zls
Figure 5. Non Linearized Header
3. JPEG

JPEG stands for Joint Photographic Experts Group, which is a standardization
committee. It also stands for the compression algorithm that was invented by this
committee. To complicate things a bit more, JPEG compressed images are often stored in
a file format called JFIF (JPEG File Interchange Format). JPEG data structures are
composed of segments that are marked by identifiers [Ref. 13]. A listing of these

markers is provided in Table 5. Each of these markers is preceded by a byte which

22

equals “Oxff’. For example a common JPEG header may look like “Oxff d8 ff 0 00 10
4a 46 49 46” (Hexadecimal), this is the simple case. The old method, implemented in

earlier versions of Foremost, of grabbing a file based on header and footer information

works well.
Marker Name Marker Identifier Description
SOl 0xd8 Start of Image
APPO Oxe0 JFIF application segment
APPn Oxe1 — Oxef Other APP segments
DQT Oxdb Quantization Table
SOF0 0xc0 Start of Frame
DHT Oxc4 Huffman Table
SOS Oxda Start of Scan
EQI 0xd9 End of Image
Table 5. JPEG Marker Information (After: Ref.[13])

However, with the advent of digital cameras and the introduction of changes to
the JPEG [Ref. 14] specifications, this method is no longer satisfactory. The new formats
now allow for multiple headers, footers and even nested images, to support thumbnails
for example. Digital cameras often utilize the APP segment marker “Oxel” to signify
that they include more meta-data than the standard JFIF. Table 6 shows the hexadecimal
representation of a JPEG taken from a Cannon digital camera; notice that the JPEG
header repeats itself in the first block. The footers are also repeated for a total of 3
header/footer pairs in this specific file. Most tools that use the header/footer method of
extraction, will extract three files out of this one image, one of those being a valid
thumbnail while the others will appear as corrupt. For these reasons a more intelligent

algorithm must be provided.

However, these compound formats still adhere to the common JFIF header
structure. Thus even multiple headers and footers pose no problems to the
implementation described below. Complex files can even increase the speed of the
algorithm because, as more of the data can be skipped, less to be processed via the Boyer-

Moore algorithm.

23

Offset Hexadecimal View of JPEG Data

0 ff d8 ff €0 00 10 4a 46 49 46 00 01 02 01 00 48
10 00 48 00 00 ff el Ob d5 45 78 69 66 00 00 4d 4d
20 00 2a 00 00 00 08 00 0a 01 0f 00 02 00 00 00 06
180 00 00 00 01 00 00 00 48 00 00 00 01 ff d8 ff e0
190 00 10 4a 46 49 46 00 01 02 01 00 48 00 48 00 00
bel 49 153249 45 24 94 £ 00 ff d9 ff ed 10 4¢ 50
1160 5f00 18 00 01 ff d8 ff e0 00 10 4a 46 49 46 00
1bc0 00 £ff d9 00 38 42 49 4d 04 21 00 00 00 00 00

Table 6. Canon Digital Camera JPEG representation

The JPEG extraction algorithm exploits the fact that each JPEG marker contains
the size of the header that the marker identifies. This allows the algorithm to jump from
header to header until an invalid header is reached. If the file is a valid JPEG then the
last marker parsed will be the SOS (Start of Scan) marker which signifies the beginning
of the actual image data. Once this marker is reached then a Boyer Moore search for the

“Oxff d9” marker (which signifies the EOF) ensues.

With this ability to parse the JPEG data structures, our enhanced version of
Foremost can now perform some error checking to ensure the file being extracting has
not been corrupted. For instance each JPEG image must contain a Huffman Table
marker as well as a Quantization Table, these checks are simple, efficient, and reduce the

amount of information that the forensic examiner must process manually.

This method of extraction increases the accuracy of extraction as well as the
speed as entire headers are skipped instead of being processed by the searching
algorithm. Headers are kilobytes in size, so the fact that they are parsed rather than

searched and interpreted byte by byte offers significant computational savings.

24

4. GIF

The Graphics Interchange Format (GIF) defines a protocol intended for the on-
line transmission and interchange of raster graphic data in a way that is independent of
the hardware used in their creation or display. There are two common versions of this
format the 87a and 89a revision [Ref. 15]. This format has remained unchanged for the
last decade and thus has proven to be a rather easy file to extract. It is one of the few
which has a defined header and footer. Both of which occur only once in the file. Thus

header and footer information is sufficient to successfully extract these files.

Table 7 illustrates header and footer information from a common GIF image. The
GIF extraction algorithm searches for the unique string “\x47 \x49 \x46 \x38” (GIF8),
once this is reached further tests are performed to determine if it is in fact a valid GIF file
and whether it is revision 87a or 89a. Once this validation is performed a Boyer Moore
search is ensues to find the unique “\x00 \x3b” identifier to determine the end of the GIF

stream.

Offset Hexadecimal

0 47 49 46 38 39 61 6¢ 02 22 03 a2 00 00 ff ff ff

48¢0 60 05 5¢ 02 00 00 3b 00
Table 7. GIF File Format

The only improvement we made to this extraction method is the fact that each
version is analyzed in one pass through the data. Previous versions of Foremost would
have to do independent searches for each header (87a and 89a). These are combined in
the enhancement so search time is reduced by not analyzing the same information

multiple times.

25

5. BMP (Windows Bitmap Files)

A BMP (Windows Bitmap File) [Ref. 16] is comparatively one of the more trivial
files to successfully extract. Table 8 shown below illustrates the information provided in
a BMP header. Notice the bfSize field in bold print, as this is the size of entire file in
bytes. This is located at the offset 2 in the file! It may seem that extraction can be
performed once this information is determined but additional checks must be provided to
help ensure that the file being extracted is indeed valid BMP. The fact that header is only
marked by two bytes “\x42 \x4d” (BM) means that a lot of false positives will be handed
to the extraction function so a lot of “sanity” checking must be performed. Thus the
horizontal and vertical sizes of the BMP are checked to see if they are reasonable values.
If they are, then we have an added level of assurance that the file is indeed a Bitmap.
More error checking could be added to take advantage of the data in the rather large
header BMP files provide.

26

Offset Field Size Contents
0000h Identifier 2 bytes ‘BM’ - Windows 3.1x, 95, NT, ...
0002h File Size 1 dword Complete file size in bytes.
0006h Reserved 1 dword Reserved for later use.
000Ah BitmapData 1 dword Offset from beginning of file to the beginning of the bitmap data.
Offset
000Eh Bitmap Header 1 dword Length of the Bitmap Info Header used to describe the bitmap colors,
Size compression, ... The following sizes are possible:
28h - Windows 3.1x, 95, NT, ...
0Ch-08/2 1x
FOh — O0S/2 2.x
0012h Width 1 dword Horizontal width of bitmap in pixels.
0016h Height 1 dword Vertical height of bitmap in pixels.
001Ah Planes 1 word Number of planes in this bitmap.
001Ch Bits Per Pixel 1 word Bits per pixel used to store palette entry information. This also
identifies in an indirect way the number of possible colors. Possible
values are:
001Eh Compression 1 dword Compression specifications. The following values are possible:
0 - none (Also identified by BI_RGB)
1 - RLE 8-bit / pixel (Also identified by B RLE4)
2 - RLE 4-bit / pixel (Also identified by BI RLES)
3 - Bitfields (Also identified by BI BITFIELDS)
0022h Bitmap Data 1 dword Size of the bitmap data in bytes. This number must be rounded to the
Size next 4 byte boundary.
0026h HResolution 1 dword Horizontal resolution expressed in pixel per meter.
002Ah VResolution 1 dword Vertical resolution expressed in pixels per meter.
002Eh Colors 1 dword Number of colors used by this bitmap. For a 8-bit / pixel bitmap this
will be 100h or 256.
0032h Important Colors 1 dword Number of important colors. This number will be equal to the number
of colors when every color is important.
0036h P